J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

Journal of Innovative Optical Health Sciences
Vol. 5, No. 2 (2012) 1250004 (9 pages)

© World Scientific Publishing Company
DOLI: 10.1142/S1793545812500046

\\E"_,\ World Scientific

www.worldscientific.com

GRAPHICS PROCESSING UNIT
CLUSTER ACCELERATED MONTE CARLO
SIMULATION OF PHOTON TRANSPORT
IN MULTI-LAYERED TISSUES

CHAO JIANG*T, HENG HE*T, PENGCHENG LI*"%
and QINGMING LUO* T
*Britton Chance Center for Biomedical Photonics
Wuhan National Laboratory for Optoelectronics

Huazhong University of Science and Technology
Wuhan 430074, China

"Key Laboratory of Biomedical Photonics of Ministry of Education
Huazhong University of Science and Technology
Wuhan 430074, China

fpengchengli@mail hust.edu.cn

Accepted 18 December 2011
Published 16 March 2012

We present a graphics processing unit (GPU) cluster-based Monte Carlo simulation of photon
transport in multi-layered tissues. The cluster is composed of multiple computing nodes in a
local area network where each node is a personal computer equipped with one or several GPU(s)
for parallel computing. In this study, the MPI (Message Passing Interface), the OpenMP (Open
Multi-Processing) and the CUDA (Compute Unified Device Architecture) technologies are
employed to develop the program. It is demonstrated that this designing runs roughly N times
faster than that using single GPU when the GPUs within the cluster are of the same type, where
N is the total number of the GPUs within the cluster.

Keywords: Photon transport in tissues; Monte Carlo simulation; GPU cluster.

1. Introduction

In the field of biomedical optics, it is of great
importance to simulate the photon transport in
biological tissues.! Among the methods usually used
for modeling the photon transporting in random
media, Monte Carlo (MC) simulation is generally
considered as a gold standard for modeling the
photon transport in biological tissues because of its
flexibility and rigorousness, especially for the bio-
logical tissue with complex structures such as adult

head, skin and so on. The MCML program devel-
oped by Wang et al.? has already been widely used
for the Monte Carlo simulation of light transport in
multi-layered tissues since its release. However,
Monte Carlo simulation is quite time-consuming
due to the extensive computational burden. For-
tunately, the algorithm of Monte Carlo method
has the full characteristics of parallel computing so
that the simulation can be accelerated by parallel
computing. Kirkby and Delpy?® used a 24-computer

1250004-1

http://dx.doi.org/10.1142/S1793545812500046

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Jiang et al.

network to simulate the light transport in tissue
using Monte Carlo method, and Colasanti et al.*
used a CRAY parallel processor computer with 128
processors. The FPGA (Field Programmable Gate
Array) is also used for accelerating the Monte Carlo
simulation on success by Lo et al.’

With the appearance of the General-Purpose
computation on Graphics Processing Units
(GPGPU), the application of GPU on parallel
computing has been attracting extensive interests in
recent times. The rapid increase in the performance of
GPU, together with improvements in its program-
mability makes it not only work as graphics rendering
device but also a kind of powerful coprocessors for
general-purposed parallel computing. Alerstam et al.’
performed a Monte Carlo simulation of time-resolved
photon migration in homogenous turbid media
with semi-infinite geometry by using a low-cost
GPU (NVIDIA Geforce 8800). This program does
not generate any spatial resolved result. They also
developed a method of Monte Carlo simulation of
light transport in multi-layered tissues based on GPU
called CUDAMCML,” which runs several 10 times to
around 100 times for various tissue models faster than
the MCML running on CPU with a NVIDIA Geforce
9800 GPU. Lo et al.® used four high-end GPUs (Nvi-
dia GTX 295 and Nvidia GTX 280) in a single com-
puter for acceleration of a standard code for the
Monte Carlo simulation of photon transport for
multiple layered turbid media and achieved 1052
folds performance improvement. The authors call this
multiple GPU-based MC (Monte Carlo) program
GPU-MCML. After that, Alerstam et al.’ further
optimized the GPU-MCML for a more advanced
Nvidia GPU (the Fermi GPU). Like our program,
both the CUDAMCML and GPU-MCML are exten-
sions of standard MCML codes of Wang et al.” to
GPU platform and generate the same spatial resolved
result as MCML. Besides, GPU is also used to accel-
erate some other MC simulations of more complex
model, such as arbitrary 3D turbid media'’ and het-
erogeneous tissue model whose surfaces are con-
structed by different number of triangle meshes.!!

To further improve the performance of GPU-
based Monte Carlo simulation, we developed a
Monte Carlo program for simulation of light
transport in multi-layered tissues using the GPU
cluster. We call it GPU cluster-based MCML or
GCMCML for short. In the GCMCML, distributed
computing of Monte Carlo simulation is performed
in multiple GPUs equipped in multiple computers

located in a local area network (LAN). The design-
ing, performance analysis and result validation are
discussed. The source code of GCMCML is released
at “http://bmp.hust.edu.cn/GPU_Cluster/GPU_
Cluster MCML.HTM”.

2. GPU-Based MCML

Our work is based on CUDA (Compute Unified
Device Architecture) GPU programming toolkit
developed by NVIDIA. CUDA is a new hardware and
software architecture for issuing and managing com-
putations running on the GPU as a data-parallel
computing device without the need of mapping them
to graphics API (Application Program Interface).”
In this study, the part of the program running on
the GPU or namely kernel is developed using the
CUDA. We programmed the skeleton of the kernel
by modifying the conventional MCML code devel-
oped by Wang et al.” In our program, when the
kernel starts, thousands of threads are launched.
The exact optimized number of threads depends on
the resources (number of processors and registers)
that a specific GPU can provide. The whole simu-
lation is partitioned into many small parts and each
thread is responsible for processing one part (a
number of photon packets). The rule of photon
transport in the tissue model is of the same as that
of the conventional CPU-based MCML.? The
weights left by the photon packets are recorded in
the global memory (video memory). The interior
absorption portion is recorded in an array called A rz
and the diffuse reflectance and transmittance are
recorded in the other two arrays called Rd_ra and
Tt_ra, respectively just as the conventional MCML
does. After the whole simulation is completed, the
host CPU copies the results from global video memory
to the main memory. This is the implementing pro-
cess of the GPU MCML on each node of the cluster.
An important problem for programming Monte
Carlo codes for GPU platform is the random
number generation. Each thread should own a
different seed for generating random number and
the random sequence of each thread should be
independent of each other. The access of global
memory is much slower than register, so a less
memory needed algorithm for making use of register
should be selected for considering the performance.
After comparing several often used algorithms,
we select the same method as CUDAMCML called

1250004-2

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

GPU Cluster Accelerated MC Simulation of Photon Transport in Multi-Layered Tissues

Multiply-With-Carry (MWC) for its simplicity and
long period (more than 269).6:13

To improve the performance of GPU-based
MCML kernel of our program as much as possible,
some optimizations were performed by referring to
the CUDAMCML developed by Alerstam et al.°
and the GPU-MCML developed by Lo et al.® These
optimizations include the use of share memory for
buffering part weights to avoid frequently accessing
global memory and some solutions for reducing the
divergence of the computational kernel.

3. GPU Cluster-Based MCML

In the previous studies for GPU-based MCML,
only one computer is used. Usually the commercial
personal computer can only support no more than
four GPUs in one PC. This limitation hinders
the further improvement of the performance of
GPU-based MCML. In our study, the technologies
of network distributed computing and general-
purposed GPU are combined for accelerating the
Monte Carlo simulation. This method enables a
cluster of computers to cooperate for one simu-
lation task. Each computer of the cluster is called a
node and equipped with one or more GPUs. This
solution can be considered as a two-layered parallel
computing architecture to accelerate the Monte
Carlo simulation. The GPUs of each node work as
the bottom layer of this architecture and all the
nodes of the cluster work as the top layer. The
implementation detail of the bottom layer is
introduced in the second section of this paper. This
section emphasizes the implementation details of
the top layer and the whole architecture.

Directly using the basic socket interfaces to do
communications in network distributed computing
is not a highly efficient way. On one hand, this
solution greatly increases the order of complexity of
programming; on the other hand, it is not con-
venient for the program transplanting among
different operating systems, as the socket interfaces
are not the same in different operating systems
(such as Microsoft Windows and Linux). In this
study, we use the MPI (Message Passing Interface)
technology to communicate among the nodes of the
cluster in a LAN. The MPI is a message-passing
application programmer interface, together with
protocol and semantic specifications for how its
features must behave in any implementation,
whose goals are high performance, scalability and

portability.'* At present, MPI becomes the main
model used in network distributed computing for
high performance parallel computing.

In the study of Lo et al., they use four GPUs in one
computer for the computing. Our GCMCML also
enables multiple GPUs on each node of the cluster.
Generally, the operating of multiple GPUs on one
computer must use the multi-thread programming.
However, the interfaces for multi-thread program-
ming are different in different operating systems.
This brings some inconvenience for the transplant-
ing of the program among different operating sys-
tems. The program must prepare multiple sets of
multi-thread generating codes for different operating
system like GPU-MCML. In order to keep the savory
transplanting among different operating systems, we
adopt the OpenMP (Open Multi-Processing) for
generating multiple threads. The OpenMP is an
application programming interface (API) that
supports multi-platform shared memory multi-
processing programming in C, C++ and Fortran on
many architectures, including Unix and Microsoft
Windows platforms. It is much easier and more
flexible than the Windows and Unix’s own multi-
thread interfaces for generating multiple threads.

Figure 1 illustrates the details of the implemen-
tation of GCMCML. The whole implementation can
be described by six steps. First, the main node (PCO0)
queries the number of GPUs of each node within the
cluster and makes a record in a table. This table will
be used for deciding how many random seeds are
delivered to a certain node by main node.

Second, the main node (PCO0) reads the random
seeds and optical properties of the media from the
input data files. The random seeds will be used to
generate the random number on the GPU. The
main node also splits and allocates the task for each
node of the cluster on average according to the
whole number of photon packets and the number of
GPUs on the each node.

Third, the main node scatters the random seeds to
other nodes. Each node is assigned certain sets of
different random seeds by the main node according
to the table built in the step 1. The number of the
GPUs of a node decides that how many sets of ran-
dom seeds it receives. Besides, the main node also
broadcasts the media parameters to all other nodes.

Fourth, the host CPU of each node decides how
many host threads should be created according to
the number of GPUs of this node by using the
OpenMP. Each host thread is responsible for

1250004-3

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Jiang et al.

Querying the number of GPUs of each node

n/fm\

Step 1
1 2 Pcn
Reading input files
Step 2 PCO | «— @ (optical properties and
random seeds)
Scattering and broadcasting parameters
Step 3 /“ \
PCO PC1 pc2 | ------ PCn
Computing on GPUs
Step 4 PCO PC1 pc2 | ------ PCn
GPUs GPUs GPUs GPUs
Gathering the records
Step 5 PCO PC1 pc2 | ------ PCn
Step 6 pco | —» B Saving output files
Fig. 1. The implementation skeleton of the GCMCML. Main

node (PCO) is responsible for delivering the random seeds and
optical properties of the media from the input files to the other
nodes, gathering the simulation results of each node into a whole
and storing it in the output files. All the nodes including the main
node process one part of the whole simulation by employing GPU.
The arrow stands for the direction in which the data flows. The
GPUs of this cluster are assumed to be of the same type.

operating a GPU. The host threads of each node
transfer the respective set of random seeds and the
media parameters to the global video memory of the
respective GPUs. Then the GPU is started by the
respective host thread to conduct the Monte Carlo
simulation. After each GPU completes its simu-
lation, the host thread of the node read back the
results from the graphic hardware’s global memory.
If more than one GPU is employed for computing in
a node, the main process of the host will also need to
sum all the results of the host threads.

Fifth, all the records of the nodes are gathered
to the main node. Finally, the main node stores the

results into the output data files. The results involve
the light distribution absorbed by the media, the
diffuse reflectance and the transmittance.

In our program, the main process of the host
converts the 64-bit integer sums into 32-bit float
data after the records of all the host threads are
summed. If the data is directly sent to the main
node and sequentially summed on the main node, a
large round-off error will happen when the number
of the nodes of the cluster is big. In order to avoid
this problem, we adopt another parallel partial
summation algorithm for summing these records of
the different nodes. All the nodes of the cluster
cooperate to complete this summing operation.
This algorithm is carried out through a serial of
successive reduction operations. Each time, half
of the nodes send their records to another half of
nodes in a one-to-one mode and each node of the
latter half of the nodes sums the two sets of the
records. Next time, the number of nodes to antici-
pate this reduction operation halves and the rest of
the nodes do the same operation as the last time.
After several times, the total sum of the records can
be obtained on the main node. In these reduction
operations, the number of nodes may not be even at
some times. In this case, the main nodes sum up
two nodes’ records at a time while the rest of the
nodes still perform in a one-to-one mode. By using
this parallel partial summation algorithm, the
round-off errors can be reduced greatly. Besides,
the performance is also improved slightly. Figure 2

ONORORORONO.

C ()

Fig. 2. An illustration of the implementation of parallel
reduction method when the total number of the nodes is six.
Each circle stands for a node.

1250004-4

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

GPU Cluster Accelerated MC Simulation of Photon Transport in Multi-Layered Tissues

gives a simple example of this parallel reduction in
the case that the total number of the nodes is six.

4. Results

4.1. Performance

To evaluate the performance of GCMCML, a
5-layered skin model from Tuchin is used for the
simulation.'® The optical properties are presented
in Table 1 involving the absorption coefficients p,,
the scattering coefficients u,, the anisotropy g and
the refractive index n. The grid resolution is
0.002 cm for dzand 0.01 cm for dr. The number of the
grids is 256 for nrand 256 for nz. The number of the
photon packets is 100 million. This skin model is also
adopted by Lo et al.”>® in their evaluation of FPGA-
based MCML and GPU-MCML. We conducted the
simulation of this skin model on two kinds of GPU
cluster. One is composed of six low-end Nvidia GPUs
(Geforce 9800GT), and the other is a high-end Nvi-
dia GPU (GTX480). The host CPU adopted in these

clusters is Intel E7300 (two-core and made in 45 nm)
working at 2.66 GHZ. The program is developed in
Microsoft Visual Studio 2005 in Windows XP and
the data type is single-precision float point. The
results below are obtained from the implementation
of this program in Windows XP. Besides, a Makefile
for Linux is also provided on our website.

To investigate the relationship between the
performance of GCMCML and the number of the
nodes, we perform a series of simulations using
GCMCML with different number of nodes. Each
node is equipped with one single Geforce 9800GT.
It is demonstrated that the simulation time con-
sumption decreases with the increasing number of
nodes, as shown in Fig. 3(a). The time consumption
is roughly inversely proportional to the number of
the nodes. Figure 3(b) also presents the speedup
fold by different number of the nodes in contrast to
single node. It shows that the performance
improvement is roughly directly proportional to
the number of the nodes. When six nodes are added
into the cluster, the simulation can be around

Table 1. Optical properties of the 5-layered skin model at 633 nm.
Layer n o p, (em™) pg (em™) g Thickness (cm)
Epidermis 1.5 4.3 107 0.79 0.01
Dermis 1.4 2.7 187 0.82 0.02
Dermis with plexus superficialis 1.4 3.3 192 0.82 0.02
Dermis 1.4 2.7 187 0.82 0.09
Dermis plexus profundus 14 3.4 194 0.82 0.06
o)
120 g 6 D
)
100 '§ 5
o)
80 =3
0 El
qu 60 =
)
= 3
l—
40 g
o)
g 2
20 <
o
g
0 5] 1¢
1 2 3 4 5 6 1 2 3 4 5 6

Number of nodes
(a)
Fig. 3.

Number of nodes

(b)

The relation between the performance and the total number of the nodes of GCMCML: (a) The time consumption versus

the number of nodes within the cluster for simulation of 100 million photon packets in the skin model as Table 1. (b) The ratio
between the time consumption using single one node and those using multiple nodes. Each node is equipped with 1 Nvidia Geforce

9800GT.

1250004-5

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

Q

Jiang et al.

10000

8990

9000 [

8000

7000

6000 [

5000 [

4000

Time consumption (s)

3000

2000

1000 -
105.25

18.047 18.0 17.969

0
A B C D E F

Fig. 4. Time consumption of different combinations of com-
puters and GPUs: A: CPU-based MCML (CPU: Intel E6300,
2-core, 65nm and 1.86 GHz); B: CPU-based MCML (CPU:
Intel E7300, 2-core, 45nm and 2.66 GHz); C: GCMCML with
one GPU; D: GCMCML with six nodes and each node is
equipped with one GPU; E: GCMCML with five nodes and one
of the five nodes is equipped with two GPUs; F: GCMCML
with four nodes and two of the four nodes are equipped with
two GPUs. The GPUs in these simulations are Nvidia Geforce
9800GT.

5.83 times faster than using single node. If more
nodes are added into the cluster, better perform-
ance can be expected.

Our program also enables multiple GPUs on
each node where the number of GPUs of different
nodes can be different. An example is presented in
Fig. 4. Different combinations of computers and
GPUs are used to perform the simulation. In this
example, the number of computers varies and the
total number of the GPUs is kept as six. It is proved
that the time consumption is mainly decided by the
total number of the GPUs. The number of the
nodes nearly has little affection on the performance
of the simulation. Besides, the time consumptions
of the conventional MCML? and GCMCML using

single one GPU are also plotted as contrasts. For
the conventional MCML tests, two kinds of CPU
with different processing ability are adopted. The
conventional MCML source codes are recompiled
using Microsoft Visual Studio 2005 into Win32
release version executable. The C++ code optim-
ization item of the compilation settings is chose as
“Full optimization.” The data type is kept as
double-precision float point without change, but
the random number generator is replaced with
MWC for the new recompiled conventional MCML.

A further investigation of time consumptions of
different operations is carried out. Table 2 demon-
strates that the overheads of the operations of
scattering and broadcasting, and gathering are
relatively quite small in contrast to that of simu-
lations. The time consumption of the two oper-
ations falls with the decrease of the number of the
nodes on the total trend. It is interesting that the
time consumption of gathering between two
neighboring groups is the same when the number of
the nodes is more than two. It is caused by the
parallel reduction algorithm. Actually, the main
node’s time consumption on the gathering oper-
ation stands for the total time consumption of this
operation. From the perspective of the main nodes,
the computation burdens of the two neighboring
groups are the same.

Another test using a high-end GPU (GTX480) is
also carried out. This GPU enables the atomic
operations to the share memory. So the optimization
of caching the high fluence regions in share memory
is allowed. This greatly boosts the total performance
of the GCMCML. For the same skin model of
Table 1, the time consumption can be reduced to
about 9.75 s with only one kind of GPU by
GCMCML when 100 million photon packets are
simulated. It indicates that the performance gained
by 1 GTX480 is roughly equal to that of 11 Geforce
9800GT. If more of these high-end GPUs are added

Table 2. The detailed time consumption of different operations of the simulations.
GPUs Scattering and broadcasting (s) Gathering (s) Simulation (s) Total time (s)
6 0.031 0.094 17.922 18.047
) 0.016 0.094 21.484 21.594
4 0.016 0.062 26.828 26.906
3 0.016 0.062 35.766 35.844
2 0.016 0.046 53.609 53.671
1 0.0 0.0 105.25 105.25

1250004-6

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

GPU Cluster Accelerated MC Simulation of Photon Transport in Multi-Layered Tissues

to the cluster, more powerful performance boost will
be gained just like the tests using Geforce 9800GT.

As Alerstam et al.” and Lo et al.® point out, the
performance improvements are also dependent on
the optical properties and the grid resolution.
Therefore, the performance improvements are
different for different models. In this paper, the
performance improvements of our GCMCML for a
5-layered media are about 48 folds on a single
Geforce 9800GT, 283 folds on a cluster composed of
six Geforce 9800GT and 522 folds on a single GTX
480 in contrast to the conventional MCML on Intel
E7300 CPU. We also did a lot of tests using other
models with different optical properties and grid
resolution. The performance improvements of some
models are higher than that of the 5-layered skin
model while others are lower.

4.2. Validation

As Lo et al’® refers, MC simulations are non-
deterministic. The simulation results of GCMCML
were validated against those of the conventional
gold standard MCML? with the statistical uncer-
tainty. The relative differences of the internal

Radius (cm)
0 0.1 0.2 0.3 0.4 0.5
é 0.05 jooo 1
::: 100
% 0.1 10
a 1
0.15 01 1
0.01
0.2 : :
(a)
Radius (cm)
5

0 0.1 0.2 0.3 0.4 0
§ 0.05 jooo
E 100
% 0.1 10
o 1
0.15 0.1
0.01
0.2 : :
(c)

absorption, the diffuse reflectance and the trans-
mittance from the two version MC programs are
analyzed. All the data comes from the simulation
result of the same 5-layered skin model above with
100 million photon packets.

Figure 5 illustrates the contours distribution of
the internal absorption. The contours of the same
value between GCMCML and MCML consist well
in total and notable difference can hardly be
observed from Fig. 5(a). Figures 5(b) and 5(d) are
the enlarged pictures of the contours of 0.01 in
Figs. 5(a) and 5(c), respectively. Figure 5(b) shows
that there is a small shift for the two contours
(red dots and blue line). This shift also exists
for the comparison of the two simulations using
the same CPU-based MCML with different random
sequence, as shown in Fig. 5(d). We also found that
there are nearly no shift for the other five contours
both for the comparisons of GCMCML and MCML
and two MCML with different random sequences
(here we did not plot). It indicates that this kind of
shift becomes notable when the value is becoming
very small, such as 0.01. As Lo et al.’ refers,
these differences are the statistical uncertainties
between runs due to the different random

Radius (cm)
042 043 044 045 046 047
0.115 : : . : . .
€ 0.12
A
< 0.125
Q.
8 0.13 * 0.01
0.135
(b)
Radius (cm)
042 043 044 045 046 047
0.115 : , : .
€ 012
o)
< 0.125
Q.
8 0.13 0.01
0.135

(d)

Fig. 5. Distribution of the internal absorption in form of contours and the values for the contours are 1000, 100, 10, 1, 0.1 and
0.01 from left to right, respectively. (a) The contours of GCMCML simulation (red dots) and MCML simulation (blue line). (b)
The enlarged picture of the part of figure (a) for the last contour. (¢) The contours of two MCML simulations with different random
sequences. (d) The enlarged picture of the part of figure (c) for the last contour.

1250004-7

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

C. Jiang et al.

10°

GCMCML
0 —— MCML-1

Diffuse reflectance (cm 2)
o

10°
-15
1 " "
0 0 0.5 1 1.5
Radius (cm)
(a)
10°
- GCMCML
N —— MCML-1
§ . s
o 10
[&]
C
8
5107
C -
o
-
15
10 - y
0 0.5 1 1.5
Radius (cm)

()

-
o
[$,]

MCML-2
—— MCML-1

N
o
o

-

o
L
o

Diffuse reflectance (cm_z)
)
(9

N
o

N
=

0.5 1 15
Radius (cm)

(b)

o

MCML-2
—— MCML-1

Transmittance (cm_z)

0 0.5 1 15
Radius (cm)

(d)

Fig. 6. Distribution of diffuse reflectance and transmittance along the radius. (a) The diffuse reflectance of GCMCML simulation
(red dots) and MCML simulation (blue line). (b) The diffuse reflectance of the two MCML simulations with different random
sequences. (¢) The transmittance of GCMCML simulation (red dots) and MCML simulation (blue line). (d) The transmittance of

the two MCML simulations with different random sequences.

sequences, rather than the errors induced by GPU-
based implementations.

Figure 6 shows the comparisons of the diffuse
reflectance distribution and the transmittance dis-
tribution along the radius. As shown in Figs. 6(a)
and 6(c), the results of the two MC programs fit
each other well in total. When the radius is roughly
smaller than 1cm, the relative difference can
hardly be told. But when the radius is roughly larger
than 1cm, the difference begins to increase. These

differences can also be explained by the statistical
uncertainty between runs due to the different ran-
dom sequences, since the comparisons between two
CPU-based MCML simulations with different ran-
dom sequences show the similar relative differ-
ences, as illustrated in Figs. 6(b) and 6(d).

Table 3 shows the total diffuse reflectance and
the total transmittance of GCMCML simulation
and the two MCML simulations with different ran-
dom sequences. The relative differences to one of the

Table 3. The total diffuse reflectance and transmittance of different runs with different MC

programs and different random sequences.

Version Diffuse reflectance Relative difference Transmittance Relative difference
MCML-1 0.240877 0 0.0214835 0
MCML-2 0.240884 2.91 x 10-° 0.0214938 4.794 x 104
MCML-3 0.240901 9.96 x 10~° 0.0214897 2.886 x 104
MCML-4 0.24084 1.536 x 10~* 0.0214924 4.143 x 104
MCML-5 0.240815 2.574 x 104 0.0214905 3.258 x 104
GCMCML 0.240909 1.328 x 10~* 0.0214943 5.027 x 104

1250004-8

J. Innov. Opt. Health Sci. 2012.05. Downloaded from www.worldscientific.com

by HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY on 10/24/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

GPU Cluster Accelerated MC Simulation of Photon Transport in Multi-Layered Tissues

five MCML simulation results (MCML-1) are also
presented. The relative differences for the GCMCML
and MCML are roughly within the same scope (about
1075 ~ 10~%) as those of the five MCML simulations
with different random sequences. This further indi-
cates that the relative differences are induced by the
different random sequences rather than GPU.

5. Conclusion and Discussion

In this paper, a GPU cluster-based Monte Carlo
simulation method is presented. By employing
network distributed computing and GPU, the
performance is greatly improved in contrast to the
CPU-based method and the single GPU-based
Monte Carlo method.

When the GPUs of the cluster are of the same
type, our GCMCML runs roughly N times faster
than using single GPU-based simulation, where N
is the total number of the GPUs within the cluster.
If the GPUs of different types are added into the
same cluster, the speedup will no longer be the total
number of the GPUs. This is because the main node
allocates the simulation task on average for all the
nodes in current program and the GPUs of different
types have different processing capability. The
poorest GPU of the cluster will be the bottleneck of
the total performance. Therefore, a more optimized
method for allocating simulation tasks considering
the processing capability of GPUs rather than
simply the total number of GPUs is needed. We
will work on for this GPU cluster-based MCML to
solve this problem.

Acknowledgments

This work is supported by the program for New
Century Excellent Talents in University (Grant No.
NCET-08-0213), Science Fund for Creative Research
Group of China (Grant No. 61121004), the National
Natural Science Foundation of China (Grant Nos.
30970964, 30800339, 30801482, and 30800313), and
the Ph.D. Programs Foundation of Ministry of Edu-
cation of China (Grant No. 20090142110054).

References

1. B. C. Wilson, G. Adam, “A Monte Carlo model for
the absorption and flux distributions of light in
tissue,” Med. Phys. 10(6), 824 (1983).

2. L. Wang, S. L. Jacques, L. Zheng, “MCML —
Monte Carlo modeling of light transport in multi-
layered tissues,” Comput. Meth. Programs Biomed.
47(2), 131 (1995).

3. D. R. Kirkby, D. T. Delpy, “Parallel operation
of Monte Carlo simulations on a diverse network
of computers,” Phys. Med. Biol. 42(6), 1203
(1997).

4. A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi,
M. Quarto, P. Riccio, G. Roberti, F. Villani,
“Multiple processor version of a Monte Carlo code
for photon transport in turbid media,” Comput.
Phys. Commun. 132(1-2), 84 (2000).

5 W. C. Y. Lo, K. Redmond, J. Luu, P. Chow,
J. Rose, L. Lilge, “Hardware acceleration of a
Monte Carlo simulation for photodynamic treat-
ment planning,” J. Biomed. Opt. 14(1), 014019
(2009).

6. E. Alerstam, T. Svensson, S. Andersson-Engels,
“Parallel computing with graphics processing
units for high-speed Monte Carlo simulation of
photon migration,” J. Biomed. Opt. 13(6), 060504
(2008).

7. E. Alerstam, T. Svensson, S. Andersson-Engels,
CUDAMCML User manual and implementation
notes (2009).

8. W. C.Y. Lo, T. D. Han, J. Rose, L. Lilge, GPU-
accelerated Monte Carlo simulation for photo-
dynamic therapy treatment planning, Proc. SPIE,
Vol. 7373, pp. 737313 (2009).

9. E. Alerstam, W. Lo, C. Yip, T. Han, D. Rose, J. S.
Andersson-Engels, L. Lilge, “Next-generation
acceleration and code optimization for light trans-
port in turbid media using GPUs,” Biomed. Opt.
Ezpress 1(2), 658 (2010).

10. Q. Fang, D. A. Boas, “Monte Carlo simulation of
photon migration in 3D turbid media accelerated by
graphics processing units,” Opt. Express 17(22),
20178 (2009).

11. N. Ren, J. Liang, X. Qu, J. Li, B. Lu, J. Tian,
“GPU-based Monte Carlo simulation for light
propagation in complex heterogeneous tissues,”
Opt. Express 18(7), 6811 (2010).

12. C. Nvidia, Compute Unified Device Architecture,
Programming Guide, version 1.1 (2007).

13. G. Marsaglia, “Random number generators,”
J. Mod. Appl. Stat. Meth. 2(1), 2 (2003).

14. 'W. Gropp, E. Lusk, N. Doss, A. Skjellum, “A high-
performance, portable implementation of the MPI
message passing interface standard,” Parallel
Comput. 22(6), 789 (1996).

15. V. V. Tuchin, “Light scattering study of tissues,”
Phys. Usp. 40(5), 495 (1997).

1250004-9

	GRAPHICS PROCESSING UNIT CLUSTER ACCELERATED MONTE CARLO SIMULATION OF PHOTON TRANSPORT IN MULTI-LAYERED TISSUES
	1. Introduction
	2. GPU-Based MCML
	3. GPU Cluster-Based MCML
	4. Results
	4.1. Performance
	4.2. Validation

	5. Conclusion and Discussion
	Acknowledgments
	References

